= VELOCITY

S F T W A R E

Linux on z/VM Performance

Large Linux Guests

Session
12390

Rob van der Heij

Velocity Software

°%e http://www.velocitysoftware.com/

. SHARE . rvdheij@velocitysoftware.com
e ¢ «* in San Francisco

February 3-8, 2013
Hilton San Francisco Union Square
San Francisco, California

Copyright © 2013 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be

Technology « Connections « Results . K
trademarks of their respective owners.

What do you consider large?
Why use large Linux guests?
Managing performance data

Encounters with large guests
= Linux Large Pages

= Virtual CPUs

= Single guest or multiple guests
= Taming the Page Cache

= Java applications

Data presented was collected with zVPS on real customer systems, sometimes
reproduced in a lab environment to show clean numbers and avoid distraction.

= VELOCITY

S O F T W A R E

What do you consider large?

Experiment in 2006 o &

z/NM on P/390
= 3-4 MIPS Penguins on a Pin Head

Experiences with tuning Linux on a P/390

= 128 MB Main Memory o von der e

Velocity Software, Inc

= 1 O O Li n U X G U e Sts rvdheij@velocitysoftware.com

http://velocitysoftware.com/

VELOCITY SOFTWARE’s 7/
VMPerformanceQuarterly mw%

Volume 8 Issue 2 Summer 2001

How many idle users
can we support now?

| | have a bet with Rob Van der

A complete System/390 processor Heij that we can run 100 Linux
on a single PCI card. servers on a 128MB P390.
Results of this bet to be
posted...

= VELOCITY o

S O F T W A R E

What do you consider large?

Penguins on a Pin Head Customer in 2012
= 3-4 MIPS = 50,000 MIPS
= 128 MB Main Memory = 1500 GB Main Memory
= 100 Linux Guests = 100 Linux Guests
* Virtual machines 30 MB * Virtual machines 20-80 GB
 Resident 0.5 -4 MB Resident 20-50 GB
e Overcommit 3-4 e Overcommit 2-3
This is bigger
= CPU 10,000
- " = Memory 10,000
I/// = Guest size 10,000

Number of guests about the same

= VELOCITY

S O F T W A R E

What do you consider large?

Hypervisor
= z/VM image today maximum 256 GB
= z/VM supports up to 32 logical CPUs

Linux Guest
= Wide range of possible configurations
= Depends on the number of virtual machines sharing
= Often around 1-10% of the hypervisor resources

? How big should the guest be so that we
= do not have any performance problems?
LY |

= VELOCITY E ”

S O F T W A R E

Why use large Linux guests?

More resources and the same number of guests
= Average guest is much larger

e Less focus on resource efficiency
= Different style of applications and application design

 Enterprise Application Ecosystems
= Manage their own resource pool

e Increased workload
= More data and higher transaction rates

= VELOCITY

6
S O F T W A R E

Less Focus on Resource Efficiency

Content-rich user interface
= Dynamic Content Management
= Customized and personalized application interface

» |[ntegration of other data sources in user interface
e Correlation with social network or shopping history

Different style of application design

= Building-block application development

» Often takes more memory and CPU cycles

* Not always perfect fit

 May encourage adding additional eye candy
= Java-based application frameworks

e Table-driven application design

* Platform indepedent

= VELOCITY

S O F T W A R E

Enterprise Application Ecosystems

Multi-threaded application middleware
= Acquires resources from Linux operating system
= Uses internal strategy to run and optimize the workload
= Assumes sole ownership of resources (no shared resources)
= Memory resources are retained until service is stopped

Many popular enterprise applications

= JVM with Java Application (WebSphere AS, JBoss)
= Databases (DB2, Oracle)

= ERP / CRM Applications (Siebel, SAP)

Performance Challenges

= Resource usage may not correlate with workload patterns
= Configuration of guest and application must match

= VELOCITY

8
S O F T W A R E

Increased Workload

More data and higher transaction rates

= |t is all just much more and bigger than before
* It helps to look at other metrics too
* At best it scales linear, often much worse
= Linux on z/VM is part of many enterprise solutions
» Applications deal with much larger workload than before
* Aspect of being a mainstream platform
= Platform serves a very wide range of workloads
e Scalability is normally taken for granted
* Do not expect it to work without additional resources
» Expectation sometimes scales less well

"I know this is inefficient, but if it works for 100,000 records,
why would it be a problem with 107 M records ?"

= VELOCITY

S O F T W A R E

Managing performance data

All performance data is needed to understand performance
= Does not work with just some of the data
= Production and Development share resources
= Systems are often used 24 hours per day

= Chargeback data is needed
 Even if only to encourage resource efficiency

Managing performance data is critical
= Especially with 10,000 times more resources
= Even with 10,000 performance analysts in house

Performance management must scale for large systems
= Group data in different ways with full capture
= Apply thresholds to keep only interesting data
= Summarize complete data for chargeback and planning
= Condense older data to allow long term archival

= VELOCITY

S O F T W A R E

10

Needle in a haystack

{q

S
Data from many processes ,\/"M/ee/r
(0]
= Can be a challenge to manage ””M/e Q”/e "Sed
. . r,
» Thresholds to keep interesting data € o, 50%
. . /7 7.0 el’e
= Condense the data in larger intervals 504 nofn'
. . o /
» Still 10,000 lines of process data per day I/I//,)Ogﬁf
= Grouping by application or user '
node/ <-Process Ident-> Nice PRTY <------ CPU Percents---->
Name ID PPID GRP Valu Valu Tot sys user syst usrt
00:30:00
SPOOKY16 0 0 0 0 0 0.59 0.20 0.39 0.00 0.00
SPOOKY18 0 0 0 0 0 1.14 0.35 0.78 0.00 0.00
SPOOKY13 0 0 0 0 0 1.10 0.29 0.48 0.14 0.19
SPOOKY3 0 0 0 0 0 0.70 0.31 0.26 0.02 0.12
snmpd 1294 1 1293 -10 6 0.55 0.30 0.23 0.01 0.01
SPOOKY33 0 0 0 0 0 2.73 0.89 1.49 0.06 0.30
java 4151 1 4151 O 20 1.46 0.50 0.96 0 0
SPOOKY34 0 0 0 0 0 1.48 0.48 0.99 0.00 0.00
java 5237 1 5237 0 20 0.63 0.16 0.47 0 0
SPOOKY30 0 0 0 0 0 1.98 0.87 1.10 0.00 0.00
db2sysc 4621 4619 4621 0 20 1.11 0.44 0.67 0 0
SPOOKY20 0 0 0 0 0 0.64 0.28 0.35 0.00 0.00
SPOOKY25 0 0 0 0 0 2.32 0.47 1.06 0.37 0.43
db2fmcd 3008 1 3008 0 20 0.81 0.01 0.00 0.37 0.43
db2sysc 3620 3618 3620 0 20 0.60 0.09 0.51 0 0

= VELOCITY

S O F T W A R E

11

Needle in a haystack

Grouping data from different servers
= Grouping in user class or node groups

= Aggregated usage from related servers
» Tiers that make up an application
* Servers that share the load

= Helps to manage performance data

Node/ Process/ ID <---Processor Percent---> Node/ Process/ ID <---Processor Percent--->

Date Application <Process><Children> Date Application <Process><Children>

Time name Total sys user syst usrt Time name Total sys user syst usrt
Node Groups ***Node Groups***

*Spooky *Totals* 0 24.1 7.0 12.5 1.4 3.2 *Spooky *Totals* 0 30.3 7.518.8 1.5 2.5

cogboots 0 2.9 0.8 2.1 0 0 cogboots 0 1.5 0.8 0.7 0 0

db2fmcd 0 2.0 0.0 0.0 0.9 1.1 db2fmcd 0 2.2 0.0 0.0 1.0 1.2

db2syscr 0 2.4 0.4 2.0 0 0 db2syscr 0 1.8 0.3 1.5 0 0

init 0 2.1 0.0 0.0 0.3 1.7 httpd2-p 0 6.6 0.1 6.5 0 0

java 0 5.9 1.8 4.1 0 0 init 0 1.4 0.0 0.0 0.4 1.0

krdagent 0 1.4 0.1 1.3 0 0 java 0 6.0 1.6 4.4 0 0

kynagent 0 0.5 0.1 0.4 0 0 krdagent 0 1.5 0.1 1.4 0 0

snmpd 0 4.9 3.2 1.6 0.0 0.0 mysqld 0 1.5 0.3 1.2 0 0

snmpd 0 5.4 3.6 1.7 0.0 0.0

12

= VELOCITY

S O F T W A R E

Mileage versus usage

Usage alone is often misleading
= Rules of thumb apply only to small range of workloads
= Determine the resource usage per unit of work
= Some workloads can absorb large amount of resources

Fuel Usage Comparison

20 gallons 4 gallons/hr 60,000 gallons 4,000 gallons/hr
20 mpg 0.2 mpg
40 person*mpg 80 person*mpg
== VELOCITY

13
S O F T W A R E

Encounters with large guests

Inspired by real customer scenarios
= Sometimes reproduced in lab environment
= Often simulated with artificial workload

Relevant for both small and large systems
= [gnorance and personal taste may not scale
= Bad ideas show best in extreme cases

.Alle Dinge sind Gift, und nichts ist
ohne Gift; allein die Dosis machts,

dass ein Ding kein Gift sei."
Parcelsus (1493-1541)

http://zvmperf.wordpress.com/

14

= VELOCITY

S O F T W A R E

Linux Large Pages

With large memory size, 4K page granularity is overkill
= Enterprise application will manage the memory itself

Virtual Memory hardware supports larger pages
= Efficient use of hardware address cache
= Enhanced DAT (z10) provides both 4K and 1M page size

z/VM does not support large pages
= z/VM guest will see hardware without the EDAT feature

Linux can emulate large pages on 4K page hardware
= Does not exploit the hardware advantages
= Still requires manipulation of 4K pages in Linux
= ... but it can save memory resources for Oracle database

= VELOCITY

S O F T W A R E

15

Linux Large Pages

Oracle process uses SGA and PGA
= SGA is shared among all database processes
= Mapped into each process virtual memory
= Page tables duplicated for each process
= Adds up to 2 MB of tables per GB of memory, per process

Example:
SGA 32 GB
Page Tables 64 MB
x 512 processes racess | a-p[Pon] | eroceis | wp[Fon] [FEI ep [Fon]
= Total Tables 32 GB $ $ $
4 System Global Area N
EEESES
. (s) (o) () (conmmet))
! !
rocess | 4b[Pon] | PELor| 4 [Foa]

= VELOCITY

S O F T W A R E

16

Linux Large Pages

Example: Oracle Database

= SGA ~50G
= Connections ~500 §Z§§ i |
" Linux Guest 80G ol
C 506 4 50 = 80G <Nkl DI S
14:15 14:30% 14:45 15:00 15:15 15:30 15:45
= Only part of SGA actually used S formemory management
* Per process less than 50G mapped
dat‘\oﬂ'- S nmii o LA 1111 g
ent P\eCOmT ;\ CO““eCUOn ‘
\)Yg_m.\,t Nu\”(\be ges i ©
*Me Lare 0
ML RRTTRTTAO , -
| | 1445 Out1Z§ melrlnc:E;prgvtented T e
i VEI_DGITY snmpd collecting data .

Linux Large Pages

Example: Oracle Database i
= SGA ~50G o
= Connections ~500 £ o
= Linux Guest 80G

]i'm

Almost no system overhead

Using Large Pages for SGA :
= Reserved 50G of Linux memory S
= System overhead is gone

H Memory Usage 01/31
= All productive Oracle work
T 600 :
___________________________________ §
80 e
—_ [%]
) a0 §
o 60 **
LB
-3
. 2 40
SGA now outside cache £ 20
= B Swapped
20 Avail
B Buffer
0+ : : : : ‘ ‘ ‘ ‘ : Lo |®Anon
10:01 10:16 10:31 10:46 Cach
- # threads
- —
—
= VELQOCITY
o 18
——
=

S O F T W A R E

Linux Large Pages

Oracle SGA using Linux Large Pages

= Savings can be substantial
» Especially with large number of database connections

= Part of guest memory set aside as “huge pages”
 Through kernel parameter at boot or dynamic
 When dynamic, do it early to avoid fragmentation

 Must be large enough to hold the SGA, anything more is wasted
Check the page size (1M versus 2M)

= Not with Oracle Automated Memory Management (AMM)
* Use SGA TARGET and PGA TARGET

= Even with large pages: do not make SGA bigger than necessary

Does not apply to DB2 LUW or JVM Heap
== VELOCITY

S O F T W A R E

19

Virtual CPUs

Large workload takes more CPU resources
= Add virtual CPUs to provide peak capacity

= Not more virtual CPUs than expected available
* Often less than number of logical CPUs

= Extra virtual CPUs don’t provide more capacity
* Scheduler share options determine capacity

= Linux assumes exclusive usage of resources
* Not guaranteed in shared resource environment
* When there is a virtual CPU, Linux assumes it will run
* With more CPUs than capacity, z/VM will spread capacity

= VELOCITY

S O F T W A R E

20

Virtual CPUs

Example
= Linux runs 2 important tasks and 2 less important

= With 2 virtual CPUs
e First run important tasks, other work when time permits

= With 4 virtual CPUs
* Run all 4 tasks at the same time
* z/VM will spread CPU capacity equal over virtual CPUs
* Important work takes longer to complete

ll s

180% in 2 CPUs 180% in 4 CPUs
90% each 45% each

= VELOCITY

S O F T W A R E

21

Virtual CPUs

Important Configuration Trade-Off
= More virtual CPUs
* Deliver peak capacity when available

= Less virtual CPUs
* Improve single-thread throughput
* Ensure predictable response times

= As few as possible to deliver peak capacity

Understand CPU requirement
= CPU usage for peak and average in recent history
 Shows what he got, not what he wanted

= Virtual CPU wait state analysis shows CPU queue
* Virtual CPU in queue waiting to run

= VELOCITY

S O F T W A R E

22

Virtual CPUs

Application Polling
= Frequent checking the status, busy-wait for service
= Poor design for shared resource environment
* Mitigated by only installing the actual application

= Virtual CPUs get in queue for no reason
Do not consume much CPU and do not need more
* It does not help much to wait faster

Create account & Log

Article Talk Read Edit View history | S88rch Q

W IEREDL Polling (computer science)

From Wikipedia, the free encyclopedia

Main page
Contents Polling, or polled operation, in computer science, refers to actively sampling the status of an external device by a client program as a synchronous
Featured content activity. Polling is most often used in terms of inputfoutput (Y0}, and is also referred to as polled HO or software-driven 1O
Current events Palling is sometimes used synonymaously with busy-wait palling (busy waiting). In this situation, when an X0 operation is required, the cormputer does
Random article nothing ather than check the status of the VO device until it is ready, at which point the device is accessed. In other words, the computer waits until the
Donate to Wikipedia device is ready. Palling also refers to the situation where a device is repeatedly checked for readiness, and if it is nat, the computer retumns to a different
~ Interaction task. Although not as wasteful of CPU cycles as busy waiting, this is generally not az efficient as the alternative to polling, interrupt-driven 0.
Help In @ simple single-purpose system, even busy-wait is perfectly appropriate if no action is possible until the YO access, but more often than not this was
ARout Wikipedia traditionally a consequence of simple hardware ar non-multitasking operating systems.

= VELOCITY)

S O F T W A R E

Virtual CPUs

Virtual CPU State Sampling

= Done by z/VM monitor sampling, typically once per second
* Counts how often running, waiting for CPU, idle, etc
 CPUwait ratio indicates CPU contention

% cpu wait
CPU demand ~
. % run % run
Set timer and Wake up and Run and use .-~
go idle gqueue for CPU timeslice
v Delay v v v <
A A -
Time
................... % cpu wait -~

PoII!ng process:
| | | | | T

* Mostly waiting for CPU

24

= VELOCITY

S O F T W A R E

Virtual CPUs

Polling and CPU State Sampling
= Polling inflates the CPU-wait numbers
* As long as there is polling, Linux still has idle time
= Additional CPU capacity will only make it wait faster
 CPU wait does not go away

1 of 1 Virtual CPU Wait State USER ROBO1 2097 40F32
<emmmmmna- Virtual CPU State Percentage --------- > Poll

Time User Run CPUwt CPwt Limit IOwt PAGwt Othr Idle Dorm Rate CPU%
)) 15:37:00 ROBO1 18.3 15.0 0 0 0 0 1.7 263 1.7 705.9 26.4
\C/_]Irtual 3|_Wayé 2650.% idle 15:38:00 ROBO1 20.0 26.7 0 0 0 0 0 253 0 648.0 27.1
A\C/)eersagséeleé) m5S Ct;greeslsec 15:39:00 ROBO1 30.0 16.7] 0 0] 0 253 0 686.3 28.5
Using 0.3 ms per cycIe 15:40:00 ROBO1 13.3 6.7 0 0 0 0 0 278 1.7 412.7 12.8
15:41:00 ROBO1 0o 1.7 0 0 0 0 0 298 © 65.7 0.8
> CPUs dormant. 60% idle 15:52:00 ROBO1 18.3 3.3 0 0 0 0 0 78.3 200 410.4 25.0
Less polling ! 15:53:00 ROBO1 23.3 15.0] 0 0] 0 61.7 200 382.3 23.2
CPUWt numbers are lower 15:54:00 ROBO1 28.3 .3] 0 0] 0 68.3 200 428.5 22.5
15:55:00 ROBO1 23.3 .3] 0 0 0 0 73.3 200 414.6 21.6

= VELQOCITY
= .o 25

S O F T W A R E

Taming the Page Cache

Linux tries to find use for any excess memory
= Will cache data just-in-case
= Strategy is unproductive in shared environment
= Reference patterns interfere with z/VM paging

Just small enough, avoid excess memory
= Commonly suggested approach
= Even smaller with swap in VDISK to satisfy peaks

Hard to do with varying memory requirements
= Re-use of page cache may cause z/VM paging delays
= Large virtual machines require a lot of paging
= Tuning with cpuplugd is too slow to be effective

= VELOCITY

S O F T W A R E

26

Taming the Page Cache

cmmflush - Flush out unused cached data at useful moments

= Removes all cached data and returns memory to z/VM
e Use CMM driver to temporarily take away memory from Linux

= Challenge is to find good moment
e After completion of unusual workload - avoids page-out of data
» Before starting unusual workload - avoids page-in of data

= Disadvantages
* Removes all useful data from cache » cmmflush
e During flush process system may run out of memory |
 CPU overhead for returning pages to z/VM

m Total
— Avail
== Cache

Memory Usage for 'tar’

mmm Buffer
=== Anon
—e— VM Resid

= VELOCITY

S O F T W A R E

27

Taming the Page Cache

nocache - Discourage Linux to Cache Data

= Wrapper around application that wipes data from cache
* Applies only to data touched by the application
* Additional tools to selectively drop files from cache
= Useful for non-core applications
* Backups, log file archival, security scanning, database load
= Experimental - Unsure yet how to package the function
* Interested in feedback from users who want to try

... -.. cached

rvdheij@roblp%i:~> mdisﬂﬁw'vm-trc*
dbdeffb03e8e7c4659d869a52a99c202 jvm-trc5.txt pr———

Memory Usage for "nocache" tar

36e1b490a40dc7b01cdbOea29d7867d2 jvm-trc6.txt i
rvdheij@moblnxl:~3 minc jvm-trc* 1500 =2 Cache

.......................... mmmm Buffer
=== Anon

—o— VM Resid

450 450 jvm-trch.txt

450 450 jvm-trc6.txt
rvdheij@roblnxl:~> drop jvm-trc6.txt
rvdheij@roblnxl:~> minc jvm-trc*

450 450 yjvm-trc5. txt

450 O jvm-trc6.txt

"""" - 1250 1

1000

Memory Usage (MB)
o ~
o a
o o

n
a
t=}

o

16:30 16:32 16:34 16:36 16:38

= VELOCITY .

S O F T W A R E

Single Guest or Multiple Guests

Single Guest

= No duplication of Linux infrastructure
Less things to manage
Obvious approach without virtualized servers
No communication overhead, less latency
Less components to break, simple availability

Multiple Guests

= Separation of applications
Tune each guest separately
Software levels specifically for application
Easier to identify performance problems
Simple charge back and accounting

= VELOCITY

S O F T W A R E 29

Single Guest or Multiple Guests

Prepare to efficiently run multiple guests

= |[nvest in processes to create additional guests
* Often most complexity is beyond actual creating the servers
 Be aware of manual tasks that need repeated for each server

= Use something that matches skills and tools
e Shared R/O disks versus “minimal install”
= Look at simplified reporting

Keep unrelated applications in separate guests

= Take advantage of server idle periods
e Avoid a big guest with “always something going on”

= Simplify software upgrades and availability requirements

Keep related applications apart as long as it makes sense
= Many exceptions (small MySQL or DB2 application database)
= Be aware of the level of interaction between tiers

= VELOCITY

S O F T W A R E

30

Single Guest or Multiple Guests

Example: Rehost z/OS application on Linux
= 7/OS with DB2 and COBOL jobs
= Linux on z/VM with Micro Focus COBOL and DB2 LUW

Initial Configuration
= Linux guest running MF COBOL
= Linux guest with DB2 LUW
= Resulted in excessive run times and high CPU usage

High CPU Usage and Latency

= |[ntroduction of DRDA layer and TCP/IP comminication
 More expensive than shared memory access under z/0OS

» Less efficient cursor-based database access

= Run application and database in a single guest
* Avoids overhead of DRDA and TCP/IP layer

= VELOCITY

S O F T W A R E

31

Java Applications

Java heap size is one of most prominent parameters %@
= Java applications use the heap to store data Fc_j
= Both temporary and persistent data Java

EVIL EDITION

= Managed by regular Garbage Collection scans

Heap size is specified at JVM startup
= Usually kept in properties managed by application
= Defined by min and max heap size

= Heap grows until above configured minimum
* Garbage collect tries to reclaim space
e Extends heap until maximum
* Returns excess beyond minimum

= VELOCITY

S O F T W A R E

32

Java Applications

Heap size determines application footprint e
= Requirement is determined by the application ffj,
* Number of classes, active users, context size Java

. EVIL EDITION
* Heap analyzers can reveal requirements

= Dedicated server approach is min and max the same
e Retains the full heap during JVM lifetime
* Reduces GC overhead
» Less attractive with shared resources
* Hides heap requirements from Linux tools

= Alternative approach
e Start with low minimum to see base requirement
e Later adjust minimum to just above base requirement
* Set maximum to absorb peaks

33

= VELOCITY

S O F T W A R E

Java Applications

Garbage Collector Threads ;é;;
= Option to spread GC over multiple CPUs =’
« Only helps when they really will run Java

EVIL EDITION

e Consider to override the default of N slaves

Some applications require multiple JVM's
= Each will need its heap to be sized right
e Total must fit in Linux memory
= Lower minimum heap size may be effective
* One JVM can use what the other released
= |gnore single-shot Java programs

Keep production systems clean

= Do not install sample programs there
* Security exposure
 More than just disk space

= VELOCITY

S O F T W A R E

34

Conclusion

Sizing does matter
= Linux on z/VM scales for large range of workloads
= Configuration options need to be coordinated

= Collect and study performance data
« Compute normalized resource usage
* Investigate exceptional usage
e Your Linux admin may not have seen it that big yet

Take advantage of virtualization
= Keep different workloads apart
= Tune the guest for that particular workload

= VELOCITY

S O F T W A R E

35

= VELOCITY

S F T W A R E

Linux on z/VM Performance

_ Large Linux Guests
Session

12390

Rob van der Heij

Velocity Software

°%e http://www.velocitysoftware.com/

. SHARE . rvdheij@velocitysoftware.com
e ¢ «* in San Francisco

February 3-8, 2013
Hilton San Francisco Union Square
San Francisco, California

Copyright © 2013 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be

Technology « Connections « Results . K
trademarks of their respective owners.

